- integral operators with kernels
- integralni operatori s jezgrama* * *
integralni operatori s jezgrama
English-Croatian dictionary. 2013.
English-Croatian dictionary. 2013.
Integral transform — In mathematics, an integral transform is any transform T of the following form:: (Tf)(u) = int {t 1}^{t 2} K(t, u), f(t), dt.The input of this transform is a function f , and the output is another function Tf . An integral transform is a… … Wikipedia
Singular integral — In mathematics, singular integrals are central to abstract harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular intetgral is an integral operator: T(f)(x) = int K(x,y)f(y) ,… … Wikipedia
Roger Jones (mathematician) — For Roger Jones the physicist and entrepreneur see Roger Jones (physicist and entrepreneur) Roger L. Jones is an American mathematician. He has his Ph.D. in mathematics from Rutgers University and has recently retired from a professorship in… … Wikipedia
Bradley Alpert — Infobox Scientist name = Bradley K. Alpert image width = caption = birth date = birth place = death date = death place = residence = citizenship = nationality = American ethnicity = field = Computational science work institution = National… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Mercer's theorem — In mathematics, specifically functional analysis, Mercer s theorem is a representation of a symmetric positive definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in (Mercer 1909), is one… … Wikipedia
Adjoint functors — Adjunction redirects here. For the construction in field theory, see Adjunction (field theory). For the construction in topology, see Adjunction space. In mathematics, adjoint functors are pairs of functors which stand in a particular… … Wikipedia
Density on a manifold — In mathematics, and specifically differential geometry, a density is a spatially varying quantity on a differentiable manifold which can be integrated in an intrinsic manner. Abstractly, a density is a section of a certain trivial line bundle,… … Wikipedia
Francois Treves — François Treves (* 1930) ist ein französischer Mathematiker, der sich mit partiellen Differentialgleichungen beschäftigt. Biografie Treves wurde 1958 an der Sorbonne bei Laurent Schwartz promoviert. Er ging dann in die USA, wo er 1958 bis 1960… … Deutsch Wikipedia
François Treves — (* 23. April 1930) ist ein französischer Mathematiker, der sich mit partiellen Differentialgleichungen beschäftigt. Biografie Treves wurde 1958 an der Sorbonne bei Laurent Schwartz promoviert. Er ging dann in die USA, wo er 1958 bis 1960… … Deutsch Wikipedia
Atiyah–Singer index theorem — In the mathematics of manifolds and differential operators, the Atiyah–Singer index theorem states that for an elliptic differential operator on a compact manifold, the analytical index (closely related to the dimension of the space of solutions) … Wikipedia